A Mucin-type O-Glycosyltransferase Modulates Cell Adhesion during Drosophila Development*S⃞
نویسندگان
چکیده
Cell-cell and cell-matrix adhesion are crucial during many stages of eukaryotic development. Here, we provide the first example that mucin-type O-linked glycosylation is involved in a developmentally regulated cell adhesion event in Drosophila melanogaster. Mutations in one member of the evolutionarily conserved family of enzymes that initiates O-linked glycosylation alter epithelial cell adhesion in the Drosophila wing blade. A transposon insertion mutation in pgant3 or RNA interference to pgant3 resulted in blistered wings, a phenotype characteristic of genes involved in integrin-mediated cell interactions. Expression of wild type pgant3 in the mutant background rescued the wing blistering phenotype, whereas expression of another family member (pgant35A) did not, revealing a unique requirement for pgant3. pgant3 mutants displayed reduced O-glycosylation along the basal surface of larval wing imaginal discs, which was restored with wild type pgant3 expression, suggesting that reduced glycosylation of basal proteins is responsible for disruption of adhesion in the adult wing blade. Glycosylation reactions demonstrated that PGANT3 glycosylates certain extracellular matrix (ECM) proteins. Immunoprecipitation experiments revealed that PGANT3 glycosylates tiggrin, an ECM protein known to bind integrin. We propose that this glycosyltransferase is uniquely responsible for glycosylating tiggrin in the wing disc, thus modulating proper cell adhesion through integrin-ECM interactions. This study provides the first evidence for the role of O-glycosylation in a developmentally regulated, integrin-mediated, cell adhesion event and reveals a novel player in wing blade formation during Drosophila development.
منابع مشابه
An O-glycosyltransferase promotes cell adhesion during development by influencing secretion of an extracellular matrix integrin ligand.
Protein secretion and localization are crucial during eukaryotic development, establishing local cell environments as well as mediating cell interactions, signaling, and adhesion. In this study, we demonstrate that the glycosyltransferase, pgant3, specifically modulates integrin-mediated cell adhesion by influencing the secretion and localization of the integrin ligand, Tiggrin. We demonstrate ...
متن کاملThe cellular microenvironment and cell adhesion: a role for O-glycosylation.
Glycosylation is one of the most abundant protein modifications in Nature, having roles in protein stability, secretion and function. Alterations in mucin-type O-glycosylation are responsible for a number of human diseases and developmental defects, as well as associated with certain types of cancer. However, the mechanistic role of this form of glycosylation in many of these instances is uncle...
متن کاملRab11 is required for maintenance of cell shape via βPS integrin mediated cell adhesion in Drosophila
In eukaryotes, vesicle trafficking is regulated by the small monomeric GTPases of the Rab protein family. Rab11, (a subfamily of the Ypt/Rab gene family) an evolutionarily conserved, ubiquitously expressed subfamily of small monomeric Rab GTPases, has been implicated in regulating vesicular trafficking through the recycling of endosomal compartment. In an earlier communication, we have shown th...
متن کاملCritical roles of mucin 1 glycosylation by transactivated polypeptide N-acetylgalactosaminyltransferase 6 in mammary carcinogenesis.
The structure of O-glycosylated proteins is altered in breast cancer cells, but the mechanisms of such an aberrant modification have been largely unknown. We here report critical roles of a novel druggable target, polypeptide N-acetylgalactosaminyltransferase 6 (GALNT6), which is upregulated in a great majority of breast cancers and encodes a glycosyltransferase responsible for initiating mucin...
متن کاملDiverse spatial expression patterns of UDP-GalNAc:polypeptide N-acetylgalactosaminyl-transferase family member mRNAs during mouse development.
Cell migration and adhesion during embryonic development are complex processes which likely involve interactions among cell-surface carbohydrates. While considerable work has implicated proteoglycans in a wide range of developmental events, only limited attention has been directed towards understanding the 7role(s) played by the related class of mucin-type O-glycans. The initial step of mammali...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of Biological Chemistry
دوره 283 شماره
صفحات -
تاریخ انتشار 2008